

ListenBrainz documentation

This documentation is for:

	Developers using our API to submit and fetch listens

	System administrators managing a ListenBrainz installation

	Contributors to the ListenBrainz project

Review the JSON documentation if you plan to work with the
ListenBrainz API. Most of the complexity comes from reading or constructing
ListenBrainz JSON documents.

Contents:

	Set up a development environment
	Install dependencies

	Register a MusicBrainz application

	Initialize ListenBrainz containers

	Initialize ListenBrainz databases

	Install node dependencies

	Run the magic script

	Test your changes with unit tests

	ListenBrainz API
	Reference

	API Usage Examples
	Prerequisites

	Examples

	JSON Documentation
	Submission JSON

	Fetching listen JSON

	Payload JSON details

	Last.FM Compatible API for ListenBrainz
	AudioScrobbler API v1.2

	Last.FM API

	ListenBrainz Data Dumps
	File Descriptions

	Structure of the listens dump

Indices and tables

	Index

	Module Index

	Search Page

Set up a development environment

To contribute to the ListenBrainz project, you need a development environment.
With your development environment, you can test your changes before submitting a
patch back to the project. This guide helps you set up a development environment
and run ListenBrainz locally on your workstation. By the end of this guide, you
will have…

	Install system dependencies

	Register a MusicBrainz application

	Initialize development databases

	Run ListenBrainz locally on your workstation

Install dependencies

The listenbrainz-server is shipped in Docker containers. This helps create
your development environment and later deploy the application. Therefore, to
work on the project, you need to install Docker and use containers for building
the project. Containers save you from installing all of this on your own
workstation.

See the different installation instructions for your distribution below.

CentOS / RHEL

sudo yum install epel-release
sudo yum install docker docker-compose

Debian / Debian-based systems

sudo apt-get update && sudo apt-get install docker docker-compose

Fedora

sudo dnf install docker docker-compose

openSUSE

sudo zypper install docker docker-compose

Ubuntu / Ubuntu-based systems

sudo apt-get update && sudo apt-get install docker docker-compose

Register a MusicBrainz application

Next, you need to register your application and get a OAuth token from
MusicBrainz. Using the OAuth token lets you sign into your development
environment with your MusicBrainz account. Then, you can import your plays from
somewhere else.

To register, visit the MusicBrainz applications page [https://musicbrainz.org/account/applications]. There, look for the
option to register [https://musicbrainz.org/account/applications/register] your application. Fill out the form with these three
options.

	Name: (any name you want and will recognize, e.g.
listenbrainz-server-devel)

	Type: Web Application

	Callback URL: http://localhost/login/musicbrainz/post

After entering this information, you’ll have a OAuth client ID and OAuth client
secret. You’ll use these for configuring ListenBrainz.

Update config.py

With your new client ID and secret, update the ListenBrainz configuration file.
If this is your first time configuring ListenBrainz, copy the sample to a live
configuration.

cp listenbrainz/config.py.sample listenbrainz/config.py

Next, open the file with your favorite text editor and look for this section.

MusicBrainz OAuth
MUSICBRAINZ_CLIENT_ID = "CLIENT_ID"
MUSICBRAINZ_CLIENT_SECRET = "CLIENT_SECRET"

Update the strings with your client ID and secret. After doing this, your
ListenBrainz development environment is able to authenticate and log in from
your MusicBrainz login.

Also, in order for the Last.FM import to work, you should also update your
Last.FM API key in this file. Look for the following section in the file.

Lastfm API
LASTFM_API_URL = "https://ws.audioscrobbler.com/2.0/"
LASTFM_API_KEY = "USE_LASTFM_API_KEY"

Update the Last.FM API key with your key. After doing this, your
ListenBrainz development environment is able to import your listens from Last.FM.

In case you don’t have a Last.FM API key, you can get it from Last.FM API page [https://last.fm/api].

You also need to update the API_URL field value to http://localhost.

We also have a Spotify importer script which imports listens from
Spotify automatically using the Spotify API. In order to run this in your
local development environment, you’ll have to register an application on the
Spotify Developer Dashboard [https://developer.spotify.com/dashboard/applications]. Use http://localhost/profile/connect-spotify/callback
as the callback URL.

After that, fill out the Spotify client ID and client secret in the following
section of the file.

SPOTIFY
SPOTIFY_CLIENT_ID = ''
SPOTIFY_CLIENT_SECRET = ''

Note

The hostname on the callback URL must be the same as the host you use to
access your development server. If you use something other than localhost, you
should update the SPOTIFY_CALLBACK_URL field accordingly.

Initialize ListenBrainz containers

Next, run the develop.sh script in the root of the repository. Using
docker-compose, it creates multiple Docker containers for the different
services and parts of the ListenBrainz server. This script starts Redis,
PostgreSQL, InfluxDB, and web server containers. This also makes it easy to stop
them all later.

The first time you run it, it downloads and creates the containers. But it’s not
finished yet.

./develop.sh

Initialize ListenBrainz databases

Your development environment needs some specific databases to work. Before
proceeding, run these three commands to initialize the databases.

docker-compose -f docker/docker-compose.yml -p listenbrainz run --rm web python3 manage.py init_db --create-db
docker-compose -f docker/docker-compose.yml -p listenbrainz run --rm web python3 manage.py init_msb_db --create-db
docker-compose -f docker/docker-compose.yml -p listenbrainz run --rm web python3 manage.py init_influx

Your development environment is now ready. Now, let’s actually see ListenBrainz
load locally!

Install node dependencies

You also need to install some JavaScript dependencies.

docker-compose -f docker/docker-compose.yml -p listenbrainz run --rm web npm install

Run the magic script

Now that the databases are initialized, always start your development
environment by executing the develop.sh script. Now, it will work as
expected.

./develop.sh

You will see the containers eventually run again. Leave the script running to
see your development environment in the browser. Later, shut it down by pressing
CTRL^C. Once everything is running, visit your new site from your browser!

http://localhost

Now, you are all set to begin making changes and seeing them in real-time inside
of your development environment!

Test your changes with unit tests

Unit tests are an important part of ListenBrainz. It helps make it easier for
developers to test changes and help prevent easily avoidable mistakes later on.
Before commiting new code or making a pull request, run the unit tests on your
code.

./test.sh

This builds and runs the containers needed for the tests. This script configures
test-specific data volumes so that test data is isolated from your development
data.

To run tests faster, you can use some options to start up the test infrastructure
once so that subsequent running of the tests is faster:

./test.sh -u # start up and initialise the database
./test.sh # run tests, do this as often as you need to
./test.sh -s # stop test containers, but don't remove them
./test.sh -d # stop and remove all test containers

Also, run the integration tests for ListenBrainz.

./integration-test.sh

When the tests complete, you will see if your changes are valid or not. These tests
are a helpful way to validate new changes without a lot of work.

ListenBrainz API

The ListenBrainz server supports the following end-points for submitting and
fetching listens. All endpoints have this root URL for our current production
site 1.

	API Root URL: https://api.listenbrainz.org

	Web Root URL: https://listenbrainz.org

Note: All ListenBrainz services are only available on HTTPS!

	1

	The beta endpoints (i.e. beta.listenbrainz.org) were deprecated in
Fall 2017. If you were using this endpoint, please use the current,
production endpoints instead.

Reference

API Calls

	
POST /1/submit-listens

	Submit listens to the server. A user token (found on https://listenbrainz.org/profile/) must
be provided in the Authorization header!

Listens should be submitted for tracks when the user has listened to half the track or 4 minutes of
the track, whichever is lower. If the user hasn’t listened to 4 minutes or half the track, it doesn’t
fully count as a listen and should not be submitted.

For complete details on the format of the JSON to be POSTed to this endpoint, see JSON Documentation.

	Request Headers

	
	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] – Token <user token>

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – listen(s) accepted.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	
GET /1/validate-token

	Check whether a User Token is a valid entry in the database.

In order to query this endpoint, send a GET request with the token to check
as the token argument (example: /validate-token?token=token-to-check)

A JSON response will be returned, with one of two codes.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The user token is valid/invalid.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – No token was sent to the endpoint.

	
GET /1/users/(user_list)/recent-listens

	Fetch the most recent listens for a comma separated list of users. Take care to properly HTTP escape
user names that contain commas!

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Fetched listens successfully.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Your user list was incomplete or otherwise invalid.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(user_name)/playing-now

	Get the listen being played right now for user user_name.

This endpoint returns a JSON document with a single listen in the same format as the /user/<user_name>/listens endpoint,
with one key difference, there will only be one listen returned at maximum and the listen will not contain a listened_at element.

The format for the JSON returned is defined in our JSON Documentation.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	
GET /1/user/(user_name)/listens

	Get listens for user user_name. The format for the JSON returned is defined in our JSON Documentation.

If none of the optional arguments are given, this endpoint will return the DEFAULT_ITEMS_PER_GET most recent listens.
The optional max_ts and min_ts UNIX epoch timestamps control at which point in time to start returning listens. You may specify max_ts or
min_ts, but not both in one call. Listens are always returned in descending timestamp order.

	Parameters

	
	max_ts – If you specify a max_ts timestamp, listens with listened_at less than (but not including) this value will be returned.

	min_ts – If you specify a min_ts timestamp, listens with listened_at greater than (but not including) this value will be returned.

	count – Optional, number of listens to return. Default: DEFAULT_ITEMS_PER_GET . Max: MAX_ITEMS_PER_GET

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	
GET /1/latest-import

	Get the timestamp of the newest listen submitted by a user in previous imports to ListenBrainz.

In order to get the timestamp for a user, make a GET request to this endpoint. The data returned will
be JSON of the following format:

{
 'musicbrainz_id': the MusicBrainz ID of the user,
 'latest_import': the timestamp of the newest listen submitted in previous imports.
 Defaults to 0
}

	Parameters

	
	user_name – the MusicBrainz ID of the user whose data is needed

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Yay, you have data!

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	
POST /1/latest-import

	Update the timestamp of the newest listen submitted by a user in an import to ListenBrainz.

In order to update the timestamp of a user, you’ll have to provide a user token in the Authorization Header. User tokens can be found on https://listenbrainz.org/profile/.

The JSON that needs to be posted must contain a field named ts in the root with a valid unix timestamp. Example:

{
 'ts': 0
}

	Request Headers

	
	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] – Token <user token>

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – latest import timestamp updated

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid JSON sent, see error message for details.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – invalid authorization. See error message for details.

Rate limiting

The ListenBrainz API is rate limited via the use of rate limiting headers that
are sent as part of the HTTP response headers. Each call will include the
following headers:

	X-RateLimit-Limit: Number of requests allowed in given time window

	X-RateLimit-Remaining: Number of requests remaining in current time
window

	X-RateLimit-Reset-In: Number of seconds when current time window expires
(recommended: this header is resilient against clients with incorrect
clocks)

	X-RateLimit-Reset: UNIX epoch number of seconds (without timezone) when
current time window expires 2

Rate limiting is automatic and the client must use these headers to determine
the rate to make API calls. If the client exceeds the number of requests
allowed, the server will respond with error code 429: Too Many Requests.
Requests that provide the Authorization header with a valid user token may
receive higher rate limits than those without valid user tokens.

	2

	Provided for compatibility with other APIs, but we still recommend using
X-RateLimit-Reset-In wherever possible

Timestamps

All timestamps used in ListenBrainz are UNIX epoch timestamps in UTC. When
submitting timestamps to us, please ensure that you have no timezone
adjustments on your timestamps.

Constants

Constants that are releavant to using the API:

	
listenbrainz.webserver.views.api_tools.MAX_LISTEN_SIZE = 10240

	Maximum overall listen size in bytes, to prevent egregious spamming.

	
listenbrainz.webserver.views.api_tools.MAX_ITEMS_PER_GET = 100

	The maximum number of listens returned in a single GET request.

	
listenbrainz.webserver.views.api_tools.DEFAULT_ITEMS_PER_GET = 25

	The default number of listens returned in a single GET request.

	
listenbrainz.webserver.views.api_tools.MAX_TAGS_PER_LISTEN = 50

	The maximum number of tags per listen.

	
listenbrainz.webserver.views.api_tools.MAX_TAG_SIZE = 64

	The maximum length of a tag

API Usage Examples

Note

These examples are written in Python version 3.6.3 and use requests [http://docs.python-requests.org/en/master/] version 2.18.4.

Prerequisites

All the examples assume you have a development version of the ListenBrainz
server set up on localhost. Remember to set DEBUG to True
in the config. When in production, you can replace localhost with
api.listenbrainz.org to use the real API. In order to use either one,
you’ll need a token. You can find it under ROOT/profile/ when signed
in, with ROOT being either localhost for the dev version or
listenbrainz.org for the real API.

Caution

You should use the token from the API you’re using. In production, change the
token to one from listenbrainz.org.

Examples

Submitting Listens

See JSON Documentation for details on the format of the Track dictionaries.

If everything goes well, the json response should be {“status”: “ok”},
and you should see a recent listen of “Never Gonna Give You Up” when you visit
ROOT/user/{your-user-name}.

from time import time
import requests

ROOT = '127.0.0.1'

def submit_listen(listen_type, payload, token):
 """Submits listens for the track(s) in payload.

 Args:
 listen_type (str): either of 'single', 'import' or 'playing_now'
 payload: A list of Track dictionaries.
 token: the auth token of the user you're submitting listens for

 Returns:
 The json response if there's an OK status.

 Raises:
 An HTTPError if there's a failure.
 A ValueError is the JSON in the response is invalid.
 """

 response = requests.post(
 url="http://{0}/1/submit-listens".format(ROOT),
 json={
 "listen_type": listen_type,
 "payload": payload,
 },
 headers={
 "Authorization": "Token {0}".format(token)
 }
)

 response.raise_for_status()

 return response.json()

if __name__ == "__main__":
 EXAMPLE_PAYLOAD = [
 {
 # An example track.
 "listened_at": int(time()),
 "track_metadata": {
 "additional_info": {
 "release_mbid": "bf9e91ea-8029-4a04-a26a-224e00a83266",
 "artist_mbids": [
 "db92a151-1ac2-438b-bc43-b82e149ddd50"
],
 "recording_mbid": "98255a8c-017a-4bc7-8dd6-1fa36124572b",
 "tags": ["you", "just", "got", "semi", "rick", "rolled"]
 },
 "artist_name": "Rick Astley",
 "track_name": "Never Gonna Give You Up",
 "release_name": "Whenever you need somebody"
 }
 }
]

 # Input token from the user and call submit listen
 token = input('Please enter your auth token: ')
 json_response = submit_listen(listen_type='single', payload=EXAMPLE_PAYLOAD, token=token)

 print("Response was: {0}".format(json_response))
 print("Check your listens - there should be a Never Gonna Give You Up track, played recently.")

Getting Listen History

See JSON Documentation for details on the format of the Track dictionaries.

If there’s nothing in the listen history of your user, you can run
submit_listens before this.

If there is some listen history, you should see a list
of tracks like this:

import requests

ROOT = '127.0.0.1'
The following token must be valid, but it doesn't have to be the token of the user you're
trying to get the listen history of.
TOKEN = 'YOUR_TOKEN_HERE'
AUTH_HEADER = {
 "Authorization": "Token {0}".format(TOKEN)
}

def get_listens(username, min_ts=None, max_ts=None, count=None):
 """Gets the listen history of a given user.

 Args:
 username: User to get listen history of.
 min_ts: History before this timestamp will not be returned.
 DO NOT USE WITH max_ts.
 max_ts: History after this timestamp will not be returned.
 DO NOT USE WITH min_ts.
 count: How many listens to return. If not specified,
 uses a default from the server.

 Returns:
 A list of listen info dictionaries if there's an OK status.

 Raises:
 An HTTPError if there's a failure.
 A ValueError if the JSON in the response is invalid.
 An IndexError if the JSON is not structured as expected.
 """
 response = requests.get(
 url="http://{0}/1/user/{1}/listens".format(ROOT, username),
 params={
 "min_ts": min_ts,
 "max_ts": max_ts,
 "count": count,
 },
 # Note that an authorization header isn't compulsary for requests to get listens
 # BUT requests with authorization headers are given relaxed rate limits by ListenBrainz
 headers=AUTH_HEADER,
)

 response.raise_for_status()

 return response.json()['payload']['listens']

if __name__ == "__main__":
 username = input('Please input the MusicBrainz ID of the user: ')
 listens = get_listens(username)

 for track in listens:
 print("Track: {0}, listened at {1}".format(track["track_metadata"]["track_name"],
 track["listened_at"]))

Track: Never Gonna Give You Up, listened at 1512040365
Track: Never Gonna Give You Up, listened at 1511977429
Track: Never Gonna Give You Up, listened at 1511968583
Track: Never Gonna Give You Up, listened at 1443521965
Track: Never Gonna Give You Up, listened at 42042042

Latest Import

Set and get the timestamp of the latest import into ListenBrainz.

Setting

from time import time
import requests

ROOT = '127.0.0.1'

def set_latest_import(timestamp, token):
 """Sets the time of the latest import.

 Args:
 timestamp: Unix epoch to set latest import to.
 token: the auth token of the user you're setting latest_import of

 Returns:
 The JSON response if there's an OK status.

 Raises:
 An HTTPError if there's a failure.
 A ValueError if the JSON response is invalid.
 """
 response = requests.post(
 url="http://{0}/1/latest-import".format(ROOT),
 json={
 "ts": timestamp
 },
 headers={
 "Authorization": "Token {0}".format(token),
 }
)

 response.raise_for_status()

 return response.json()

if __name__ == "__main__":
 ts = int(time())
 token = input('Please enter your auth token: ')
 json_response = set_latest_import(ts, token)

 print("Response was: {0}".format(json_response))
 print("Set latest import time to {0}.".format(ts))

Getting

If your user has never imported before and the latest import has never been
set by a script, then the server will return 0 by default. Run
set_latest_import before this if you don’t want to actually import any
data.

import requests

ROOT = '127.0.0.1'
The token can be any valid token.
TOKEN = 'YOUR_TOKEN_HERE'
AUTH_HEADER = {
 "Authorization": "Token {0}".format(TOKEN)
}

def get_latest_import(username):
 """Gets the latest import timestamp of a given user.

 Args:
 username: User to get latest import time of.

 Returns:
 A Unix timestamp if there's an OK status.

 Raises:
 An HTTPError if there's a failure.
 A ValueError if the JSON in the response is invalid.
 An IndexError if the JSON is not structured as expected.
 """
 response = requests.get(
 url="http://{0}/1/latest-import".format(ROOT),
 params={
 "user_name": username,
 },
 headers=AUTH_HEADER,
)

 response.raise_for_status()
 return response.json()["latest_import"]

if __name__ == "__main__":
 username = input('Please input the MusicBrainz ID of the user: ')
 timestamp = get_latest_import(username)

 print("User {0} last imported on {1}".format(username, timestamp))

You should see output like this:

User naiveaiguy last imported on 30 11 2017 at 12:23

JSON Documentation

Note

Do not submit copyrighted information in these fields!

Submission JSON

To submit a listen via our API (see: ListenBrainz API), POST a JSON document to
the submit-listens endpoint. Submit one of three types JSON documents:

	single: Submit single listen

	Indicates user just finished listening to track

	Only a single track may be specified in payload

	playing_now: Submit playing_now notification

	Indicates that user just began listening to track

	payload contains only one track

	Submitting playing_now documents is optional

	Timestamp must be omitted from a playing_now submission.

	import: Submit previously saved listens

	payload may contain more than one listen, but complete document may not
exceed MAX_LISTEN_SIZE bytes in size

The listen_type element defines different types of submissions. The element
is placed at the top-most level of the JSON document. The only other required
element is the payload element. This provides an array of listens – the
payload may be one or mote listens (as designated by listen_type):

{
 "listen_type": "single",
 "payload": [
 --- listen data here ---
]
}

A sample listen payload may look like:

{
 "listened_at": 1443521965,
 "track_metadata": {
 "additional_info": {
 "release_mbid": "bf9e91ea-8029-4a04-a26a-224e00a83266",
 "artist_mbids": [
 "db92a151-1ac2-438b-bc43-b82e149ddd50"
],
 "recording_mbid": "98255a8c-017a-4bc7-8dd6-1fa36124572b",
 "tags": ["you", "just", "got", "rick rolled!"]
 },
 "artist_name": "Rick Astley",
 "track_name": "Never Gonna Give You Up",
 "release_name": "Whenever you need somebody"
 }
}

A complete submit listen JSON document may look like:

{
 "listen_type": "single",
 "payload": [
 {
 "listened_at": 1443521965,
 "track_metadata": {
 "additional_info": {
 "release_mbid": "bf9e91ea-8029-4a04-a26a-224e00a83266",
 "artist_mbids": [
 "db92a151-1ac2-438b-bc43-b82e149ddd50"
],
 "recording_mbid": "98255a8c-017a-4bc7-8dd6-1fa36124572b",
 "tags": ["you", "just", "got", "rick rolled!"]
 },
 "artist_name": "Rick Astley",
 "track_name": "Never Gonna Give You Up",
 "release_name": "Whenever you need somebody"
 }
 }
]
}

Fetching listen JSON

The JSON documents returned from our API look like the following:

{
 "payload": {
 "count": 25,
 "user_id": "-- the MusicBrainz ID of the user --",
 "listens": [
 "-- listen data here ---"
]
 }
}

The number of listens in the document are returned by the top-level count
element. The user_id element contains the MusicBrainz ID of the user whose listens are
being returned. The other element is the listens element. This is a list which contains
the listen JSON elements (described above).

The JSON document returned by the API endpoint for getting tracks being played right now
is the same as above, except that it also contains the payload/playing_now element as a
boolean set to True.

Payload JSON details

A minimal payload must include
track_metadata/artist_name and track_metadata/track_name elements:

{
 "track_metadata": {
 "artist_name": "Rick Astley",
 "track_name": "Never Gonna Give You Up",
 }
}

artist_name and track_name elements must be simple strings.

The payload will also include the listened_at element which must be an integer
representing the Unix time when the track was listened to. The only exception to this
rule is when the listen is being played right now and has been retrieved from the
endpoint to get listens being played right now. The listened_at element will be
absent for such listens.

Add additional metadata you may have for a track to the additional_info
element. Any additional information allows us to better correlate your listen
data to existing MusicBrainz-based data. If you have MusicBrainz IDs available,
submit them!

The following optional elements may also be included in the track_metadata element:

	element

	description

	release_name

	the name of the release this recording was played from.

The following optional elements may also be included in the additional_info element. If you do not have
the data for any of the following fields, omit the key entirely:

	element

	description

	artist_mbids

	A list of MusicBrainz Artist IDs, one or more Artist IDs may be included here. If you have a complete MusicBrainz artist credit that contains multiple Artist IDs, include them all in this list.

	release_group_mbid

	A MusicBrainz Release Group ID of the release group this recording was played from.

	release_mbid

	A MusicBrainz Release ID of the release this recording was played from.

	recording_mbid

	A MusicBrainz Recording ID of the recording that was played.

	track_mbid

	A MusicBrainz Track ID associated with the recording that was played.

	work_mbids

	A list of MusicBrainz Work IDs that may be associated with this recording.

	tracknumber

	The tracknumber of the recording. This first recording on a release is tracknumber 1.

	isrc

	The ISRC code associated with the recording.

	spotify_id

	The Spotify track URL associated with this recording. e.g.: http://open.spotify.com/track/1rrgWMXGCGHru5bIRxGFV0

	tags

	A list of user defined tags to be associated with this recording. These tags are similar to last.fm tags. For example, you have apply tags such as punk, see-live, smelly. You may submit up to MAX_TAGS_PER_LISTEN tags and each tag may be up to MAX_TAG_SIZE characters large.

At this point, we are not scrubbing any superflous elements that may be
submitted via the additional_info element. We’re open to see how people
will make use of these unspecified fields and may decide to formally specify or
scrub elements in the future.

Last.FM Compatible API for ListenBrainz

There are two versions of the Last.FM API used by clients to submit data to Last.FM.

	The latest Last.FM API [https://www.last.fm/api]

	The AudioScrobbler API v1.2 [http://www.audioscrobbler.net/development/protocol/]

ListenBrainz can understand requests sent to both these APIs and use their data to import listens submitted by clients like VLC and Spotify. Existing Last.FM clients can be pointed to the ListenBrainz proxy URL [http://proxy.listenbrainz.org] and they should submit listens to ListenBrainz instead of Last.FM.

Note: This information is also present on the ListenBrainz website [https://listenbrainz.org/lastfm-proxy].

AudioScrobbler API v1.2

Clients supporting the old version of the AudioScrobbler API (such as VLC and Spotify) can be configured to work with ListenBrainz by making the client point to http://proxy.listenbrainz.org and using your MusicBrainz ID as username and the LB Authorization Token [https://listenbrainz.org/profile/] as password.

If the software you are using doesn’t support changing where the client submits info (like Spotify), you can edit your /etc/hosts file as follows:

138.201.169.196 post.audioscrobbler.com
138.201.169.196 post2.audioscrobbler.com

Last.FM API

These instructions are for setting up usage of the Last.FM API for Audacious client on Ubuntu. These steps can be modified for other clients as well.

For development

	Install dependencies from here [http://redmine.audacious-media-player.org/boards/1/topics/788], then clone the repo and install audacious.

	Before installing audacious-plugins, edit the file audacious-plugins/src/scrobbler2/scrobbler.h to update the following setting on line L28. This is required only because the local server does not have https support.:

`SCROBBLER_URL` to "http://ws.audioscrobbler.com/2.0/".

	Compile and install the plugins from the instructions given here [http://redmine.audacious-media-player.org/boards/1/topics/788].

	Edit the /etc/hosts file and add the following entry:

127.0.0.1 ws.audioscrobbler.com

	Flush dns and restart network manager using:

$ sudo /etc/init.d/dns-clean start
$ sudo /etc/init.d/networking restart

	Register an application on MusicBrainz with the following Callback URL http://<HOSTURL>/login/musicbrainz/post and update the received MusicBrainz Client ID and Client Secret in config.py of ListenBrainz. HOSTURL should be as per the settings of the server. Example: localhost

	In Audacious, go to File > Settings > Plugins > Scrobbler2.0 and enable it. Now open its settings and then authenticate.

	
	When you get a URL from your application which look like this http://last.fm/api/auth/?api_key=as3..234&.., replace it with http://<HOSTURL>/api/auth/?api_key=as3..234&...

	
	If you are running a local server, then HOSTURL should be similar to “localhost:8080”.

	If you are not running the server, then HOSTURL should be “api.listenbrainz.org”.

For users

	Repeat all the above steps, except for steps 2 and 6.

	For Step 8, choose the 2nd option for HOSTURL.

ListenBrainz Data Dumps

ListenBrainz provides data dumps that you can import into your own server or
use for other purposes. These data dumps are created regularly once a month.
Each dump contains a number of different files. Depending on your use cases,
you may or may not require all of them.

File Descriptions

A ListenBrainz data dump consists of two archives:

	listenbrainz-public-dump.tar.xz

	listenbrainz-listens-dump.tar.xz

listenbrainz-public-dump.tar.xz

This file contains information about ListenBrainz users and statistics derived
from listens submitted to ListenBrainz calculated using Google BigQuery about
users, artists, recordings etc.

listenbrainz-listens-dump.tar.xz

This is the core ListenBrainz data dump. This file contains all the listens
submitted to ListenBrainz by its users.

Structure of the listens dump

The ListenBrainz listens dump consists of a number of files containing listens
in JSON format, one document per line. Each user’s listens are listed in one file in chronological
order, with the latest listen first. The exact location of each user’s listens is
listed in the index.json file which is a JSON document containing a file name,
an offset and size (in bytes) to uniquely identify the location and size of each user’s
listens.

The format of the index.json file is as follows:

{
 'user1': {
 'file_name': "file which contains user1's listens",
 'offset': "the byte at which user1's listens begin in the file",
 'size': "the size (in bytes) of the user's listens"
 }
}

Hence, if you wanted to extract a particular user’s listens, you would look up that
user in the index.json file, find the filename and offset from there, open the
file and seek to that byte and read the bytes specified by the index.json files.
Each line in the part of the file we read is a listen submitted for that particular
user.

Here is some example code to explain the mentioned way of parsing the listens dump:

import json
import os

def read_user_listens(username):
 with open('index.json') as f:
 index = json.load(f)

 # get the filename, offset and size for user
 # from the index
 file_name = index[username]['file_name']
 offset = index[username]['offset']
 size = index[username]['size']

 # directory structure of the form "listens/%s/%s/%s.listens" % (uuid[0], uuid[0:2], uuid)
 file_path = os.path.join('listens', file_name[0], file_name[0:2], '%s.listens' % file_name)
 with open(file_path) as listen_file:
 listen_file.seek(offset)
 listens = listen_file.read(size)
 return map(json.loads, listens.split('\n'))

if __name__ == '__main__':
 username = input('Enter the name of the user: ')
 for listen in read_user_listens(username):
 print(json.dumps(listen, indent=4))

 HTTP Routing Table

 /1

 		 	

 		
 /1	

 	
 	
 GET /1/latest-import	

 	
 	
 GET /1/user/(user_name)/listens	

 	
 	
 GET /1/user/(user_name)/playing-now	

 	
 	
 GET /1/users/(user_list)/recent-listens	

 	
 	
 GET /1/validate-token	

 	
 	
 POST /1/latest-import	

 	
 	
 POST /1/submit-listens	

Index

 D
 | M

D

 	
 	DEFAULT_ITEMS_PER_GET (in module listenbrainz.webserver.views.api_tools)

M

 	
 	MAX_ITEMS_PER_GET (in module listenbrainz.webserver.views.api_tools)

 	MAX_LISTEN_SIZE (in module listenbrainz.webserver.views.api_tools)

 	
 	MAX_TAG_SIZE (in module listenbrainz.webserver.views.api_tools)

 	MAX_TAGS_PER_LISTEN (in module listenbrainz.webserver.views.api_tools)

 _static/minus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 ListenBrainz documentation

 		
 Set up a development environment

 		
 Install dependencies

 		
 CentOS / RHEL

 		
 Debian / Debian-based systems

 		
 Fedora

 		
 openSUSE

 		
 Ubuntu / Ubuntu-based systems

 		
 Register a MusicBrainz application

 		
 Update config.py

 		
 Initialize ListenBrainz containers

 		
 Initialize ListenBrainz databases

 		
 Install node dependencies

 		
 Run the magic script

 		
 Test your changes with unit tests

 		
 ListenBrainz API

 		
 Reference

 		
 API Calls

 		
 Rate limiting

 		
 Timestamps

 		
 Constants

 		
 API Usage Examples

 		
 Prerequisites

 		
 Examples

 		
 Submitting Listens

 		
 Getting Listen History

 		
 Latest Import

 		
 JSON Documentation

 		
 Submission JSON

 		
 Fetching listen JSON

 		
 Payload JSON details

 		
 Last.FM Compatible API for ListenBrainz

 		
 AudioScrobbler API v1.2

 		
 Last.FM API

 		
 For development

 		
 For users

 		
 ListenBrainz Data Dumps

 		
 File Descriptions

 		
 listenbrainz-public-dump.tar.xz

 		
 listenbrainz-listens-dump.tar.xz

 		
 Structure of the listens dump

_static/ajax-loader.gif

